* @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://phpseclib.sourceforge.net */ namespace phpseclib\Crypt; use phpseclib\Math\BigInteger; /** * Pure-PHP PKCS#1 compliant implementation of RSA. * * @package RSA * @author Jim Wigginton * @access public */ class RSA { /**#@+ * @access public * @see self::encrypt() * @see self::decrypt() */ /** * Use {@link http://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding Optimal Asymmetric Encryption Padding} * (OAEP) for encryption / decryption. * * * @see self::setHash() * @see self::setMGFHash() */ const ENCRYPTION_OAEP = 1; /** * Use PKCS#1 padding. * * Although self::ENCRYPTION_OAEP offers more security, including PKCS#1 padding is necessary for purposes of backwards * compatibility with protocols (like SSH-1) written before OAEP's introduction. */ const ENCRYPTION_PKCS1 = 2; /** * Do not use any padding * * Although this method is not recommended it can none-the-less sometimes be useful if you're trying to decrypt some legacy * stuff, if you're trying to diagnose why an encrypted message isn't decrypting, etc. */ const ENCRYPTION_NONE = 3; /**#@-*/ /**#@+ * @access public * @see self::sign() * @see self::verify() * @see self::setHash() */ /** * Use the Probabilistic Signature Scheme for signing * * Uses sha1 by default. * * @see self::setSaltLength() * @see self::setMGFHash() */ const SIGNATURE_PSS = 1; /** * Use the PKCS#1 scheme by default. * * Although self::SIGNATURE_PSS offers more security, including PKCS#1 signing is necessary for purposes of backwards * compatibility with protocols (like SSH-2) written before PSS's introduction. */ const SIGNATURE_PKCS1 = 2; /**#@-*/ /**#@+ * @access private * @see \phpseclib\Crypt\RSA::createKey() */ /** * n * (if enabled; otherwise, the internal implementation will be used) */ const MODE_OPENSSL = 2; /**#@-*/ /**#@+ * @access public * @see \phpseclib\Crypt\RSA::createKey() * @see \phpseclib\Crypt\RSA::setPrivateKeyFormat() */ /** * PKCS#1 formatted private key * * Used by OpenSSH */ const PRIVATE_FORMAT_PKCS1 = 0; /** * PuTTY formatted private key */ const PRIVATE_FORMAT_PUTTY = 1; /** * XML formatted private key */ const PRIVATE_FORMAT_XML = 2; /** * PKCS#8 formatted private key */ const PRIVATE_FORMAT_PKCS8 = 8; /**#@-*/ /**#@+ * @access public * @see \phpseclib\Crypt\RSA::createKey() * @see \phpseclib\Crypt\RSA::setPublicKeyFormat() */ / * An array containing two \phpseclib\Math\BigInteger objects. * * The exponent can be indexed with any of the following: * * 0, e, exponent, publicExponent * * The modulus can be indexed with any of the following: * * 1, n, modulo, modulus */ const PUBLIC_FORMAT_RAW = 3; /** * PKCS#1 formatted public key (raw) * * Used by File/X509.php * * Has the following header: * * -----BEGIN RSA PUBLIC KEY----- * * Analogous to ssh-keygen's pem format (as specified by -m) */ const PUBLIC_FORMAT_PKCS1 = 4; const PUBLIC_FORMAT_PKCS1_RAW = 4; /** * XML formatted public key */ const PUBLIC_FORMAT_XML = 5; /** * OpenSSH formatted public key * * Place in $HOME/.ssh/authorized_keys */ const PUBLIC_FORMAT_OPENSSH = 6; /** * PKCS#1 formatted public key (encapsulated) * * Used by PHP's openssl_public_encrypt() and openssl's rsautl (when -pubin is set) * * Has the following header: * * -----BEGIN PUBLIC KEY----- * * Analogous to ssh-keygen's pkcs8 format (as specified by -m). Although PKCS8 * is specific to private keys it's basically creating a DER-encoded wrapper * for keys. This just extends that same concept to public keys (much like ssh-keygen) */ con /** * * For use with parsing XML formatted keys. PHP's XML Parser functions use utilized - instead of PHP's DOM functions - * because PHP's XML Parser functions work on PHP4 whereas PHP's DOM functions - although surperior - don't. * * @see self::_start_element_handler() * @var array * @access private */ var $components = array(); * * For use with parsing XML formatted keys. * * @see self::_character_handler() * @see self::_stop_element_handler() * @var mixed * @access private */ var $current; /** * OpenSSL configuration file name. * * Set to null to use system configuration file. * @see self::createKey() * @var mixed * @Access public */ var $configFile; /** * Public key comment field. * * @var string * @access private */ var $comment = 'phpseclib-generated-key'; var $bitstrlenOverload = false; var $bitsubstrOverload = false; function bitstrlen($str) { return $this->bitstrlenOverload ? mb_strlen($str, '8bit') : strlen($str); } function bitsubstr($str, $start, $length = null) { return $this->bitsubstrOverload ? mb_substr($str, $start, $length, '8bit') : (isset($length) ? substr($str, $start, $length) : substr($str, $start)); } * * If you want to make use of the openssl extension, you'll need to set the mode manually, yourself. The reason * \phpseclib\Crypt\RSA doesn't do it is because OpenSSL doesn't fail gracefully. openssl_pkey_new(), in particular, requires * openssl.cnf be present somewhere and, unfortunately, the only real way to find out is too late. * * @return \phpseclib\Crypt\RSA * @access public */ function __construct() { $isMbOverload = intval(@ini_get('mbstring.func_overload')) & ~5; $this->bitstrlenOverload = function_exists('mb_strlen') && $isMbOverload; $this->bitsubstrOverload = function_exists('mb_substr') && $isMbOverload; if (!defined('CRYPT_RSA_MODE')) { switch (true) { // Math/BigInteger's openssl requirements are a little less stringent than Crypt/RSA's. in particular, // Math/BigInteger doesn't require an openssl.cfg file whereas Crypt/RSA does. so if Math/BigInteger // can't use OpenSSL it can be pretty trivially assumed, then, that Crypt/RSA can't either. case defined('MATH_BIGINTEGER_OPENSSL_DISABLE'): define('CRYPT_RSA_MODE', self::MODE_INTERNAL); break; case extension_loaded('openssl') && file_exists($this->configFile): // some versions of XAMPP have mismatched versions of OpenSSL which causes it not to work $versions = array(); // avoid generating errors (even with suppression) when phpinfo() is disabled (common in production systems) if (strpos(ini_get('disable_functions'), 'phpinfo') === false) { ob_start(); @phpinfo(); $content = ob_get_contents(); ob_end_clean(); preg_match_all('#OpenSSL (Header|Library) Version(.*)#im', $content, $matches); if (!empty($matches[1])) { for ($i = 0; $i < count($matches[1]); $i++) { $fullVersion = trim(str_replace('=>', '', strip_tags($matches[2][$i]))); // Remove letter part in OpenSSL version if (!preg_match('/(\d+\.\d+\.\d+)/i', $fullVersion, $m)) { $versions[$matches[1][$i]] = $fullVersion; } else { $versions[$matches[1][$i]] = $m[0]; } } } } // it doesn't appear that OpenSSL versions were reported upon until PHP 5.3+ switch (true) { case !isset($versions['Header']): case !isset($versions['Library']): case $versions['Header'] == $versions['Library']: case version_compare($versions['Header'], '1.0.0') >= 0 && version_compare($versions['Library'], '1.0.0') >= 0: define('CRYPT_RSA_MODE', self::MODE_OPENSSL); break; default: define('CRYPT_RSA_MODE', self::MODE_INTERNAL); define('MATH_BIGINTEGER_OPENSSL_DISABLE', true); } break; default: define('CRYPT_RSA_MODE', self::MODE_INTERNAL); } } $this->zero = new BigInteger(); $this->one = new BigInteger(1); $this->hash = new Hash('sha1'); $this->hLen = $this->hash->getLength(); $this->hashName = 'sha1'; $this->mgfHash = new Hash('sha1'); $this->mgfHLen = $this->mgfHash->getLength(); } /** * Create public / private key pair * * Returns an array with the following three elements: * - 'privatekey': The private key. * - 'publickey': The public key. * - 'partialkey': A partially computed key (if the execution time exceeded $timeout). * Will need to be passed back to \phpseclib\Crypt\RSA::createKey() as the third parameter for further processing. * * @access public * @param int $bits * @param int $timeout * @param array $p */ function createKey($bits = 1024, $timeout = false, $partial = array()) { if (!defined('CRYPT_RSA_EXPONENT')) { // http://en.wikipedia.org/wiki/65537_%28number%29 define('CRYPT_RSA_EXPONENT', '65537'); } // per , this number ought not result in primes smaller // than 256 bits. as a consequence if the key you're trying to create is 1024 bits and you've set CRYPT_RSA_SMALLEST_PRIME // to 384 bits then you're going to get a 384 bit prime and a 640 bit prime (384 + 1024 % 384). at least if // CRYPT_RSA_MODE is set to self::MODE_INTERNAL. if CRYPT_RSA_MODE is set to self::MODE_OPENSSL then // CRYPT_RSA_SMALLEST_PRIME is ignored (ie. multi-prime RSA support is more intended as a way to speed up RSA key // generation when there's a chance neither gmp nor OpenSSL are installed) if (!defined('CRYPT_RSA_SMALLEST_PRIME')) { define('CRYPT_RSA_SMALLEST_PRIME', 4096); } // OpenSSL uses 65537 as the exponent and requires RSA keys be 384 bits minimum if (CRYPT_RSA_MODE == self::MODE_OPENSSL && $bits >= 384 && CRYPT_RSA_EXPONENT == 65537) { $config = array(); if (isset($this->configFile)) { $config['config'] = $this->configFile; } $rsa = openssl_pkey_new(array('private_key_bits' => $bits) + $config); openssl_pkey_export($rsa, $privatekey, null, $config); $publickey = openssl_pkey_get_details($rsa); $publickey = $publickey['key']; $privatekey = call_user_func_array(array($this, '_convertPrivateKey'), array_values($this->_parseKey($privatekey, self::PRIVATE_FORMAT_PKCS1))); $publickey = call_user_func_array(array($this, '_convertPublicKey'), array_values($this->_parseKey($publickey, self::PUBLIC_FORMAT_PKCS1))); // clear the buffer of error strings stemming from a minimalistic openssl.cnf while (openssl_error_string() !== false) { } return array( 'privatekey' => $privatekey, 'publickey' => $publickey, 'partialkey' => false ); } static $e; if (!isset($e)) { $e = new BigInteger(CRYPT_RSA_EXPONENT); } extract($this->_generateMinMax($bits)); $absoluteMin = $min; $temp = $bits >> 1; // divide by two to see how many bits P and Q would be if ($temp > CRYPT_RSA_SMALLEST_PRIME) { $num_primes = floor($bits / CRYPT_RSA_SMALLEST_PRIME); $temp = CRYPT_RSA_SMALLEST_PRIME; } else { $num_primes = 2; } extract($this->_generateMinMax($temp + $bits % $temp)); $finalMax = $max; extract($this->_generateMinMax($temp)); $generator = new BigInteger(); $n = $this->one->copy(); if (!empty($partial)) { extract(unserialize($partial)); } else { $exponents = $coefficients = $primes = array(); $lcm = array( 'top' => $this->one->copy(), 'bottom' => false ); } $start = time(); $i0 = count($primes) + 1; do { for ($i = $i0; $i <= $num_primes; $i++) { if ($timeout !== false) { $timeout-= time() - $start; $start = time(); if ($timeout <= 0) { return array( 'privatekey' => '', 'publickey' => '', 'partialkey' => serialize(array( 'primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents )) ); } } if ($i == $num_primes) { list($min, $temp) = $absoluteMin->divide($n); if (!$temp->equals($this->zero)) { $min = $min->add($this->one); // ie. ceil() } $primes[$i] = $generator->randomPrime($min, $finalMax, $timeout); } else { $primes[$i] = $generator->randomPrime($min, $max, $timeout); } if ($primes[$i] === false) { // if we've reached the timeout if (count($primes) > 1) { $partialkey = ''; } else { array_pop($primes); $partialkey = serialize(array( 'primes' => $primes, 'coefficients' => $coefficients, 'lcm' => $lcm, 'exponents' => $exponents )); } return array( 'privatekey' => '', 'publickey' => '', 'partialkey' => $partialkey ); } // the first coefficient is calculated differently from the rest // ie. instead of being $primes[1]->modInverse($primes[2]), it's $primes[2]->modInverse($primes[1]) if ($i > 2) { $coefficients[$i] = $n->modInverse($primes[$i]); } $n = $n->multiply($primes[$i]); $temp = $primes[$i]->subtract($this->one); // textbook RSA implementations use Euler's totient function instead of the least common multiple. // see http://en.wikipedia.org/wiki/Euler%27s_totient_function $lcm['top'] = $lcm['top']->multiply($temp); $lcm['bottom'] = $lcm['bottom'] === false ? $temp : $lcm['bottom']->gcd($temp); $exponents[$i] = $e->modInverse($temp); } list($temp) = $lcm['top']->divide($lcm['bottom']); $gcd = $temp->gcd($e); $i0 = 1; } while (!$gcd->equals($this->one)); $d = $e->modInverse($temp); $coefficients[2] = $primes[2]->modInverse($primes[1]); // from : // RSAPrivateKey ::= SEQUENCE { // version Version, // modulus INTEGER, -- n // publicExponent INTEGER, -- e // privateExponent INTEGER, -- d // prime1 INTEGER, -- p // prime2 INTEGER, -- q // exponent1 INTEGER, -- d mod (p-1) // exponent2 INTEGER, -- d mod (q-1) // coefficient INTEGER, -- (inverse of q) mod p // otherPrimeInfos OtherPrimeInfos OPTIONAL // } return array( 'privatekey' => $this->_convertPrivateKey($n, $e, $d, $primes, $exponents, $coefficients), 'publickey' => $this->_convertPublicKey($n, $e), 'partialkey' => false ); } /** * Convert a private key to the appropriate format. * * @access private * @see self::setPrivateKeyFormat() * @param string $RSAPrivateKey * @return string */ function _convertPrivateKey($n, $e, $d, $primes, $exponents, $coefficients) { $signed = $this->privateKeyFormat != self::PRIVATE_FORMAT_XML; $num_primes = count($primes); $raw = array( 'version' => $num_primes == 2 ? chr(0) : chr(1), // two-prime vs. multi 'modulus' => $n->toBytes($signed), 'publicExponent' => $e->toBytes($signed), 'privateExponent' => $d->toBytes($signed), 'prime1' => $primes[1]->toBytes($signed), 'prime2' => $primes[2]->toBytes($signed), 'exponent1' => $exponents[1]->toBytes($signed), 'exponent2' => $exponents[2]->toBytes($signed), 'coefficient' => $coefficients[2]->toBytes($signed) ); // if the format in question does not support multi-prime rsa and multi-prime rsa was used, // call _convertPublicKey() instead. switch ($this->privateKeyFormat) { case self::PRIVATE_FORMAT_XML: if ($num_primes != 2) { return false; } return "\r\n" . ' ' . base64_encode($raw['modulus']) . "\r\n" . ' ' . base64_encode($raw['publicExponent']) . "\r\n" . '

' . base64_encode($raw['prime1']) . "

\r\n" . ' ' . base64_encode($raw['prime2']) . "\r\n" . ' ' . base64_encode($raw['exponent1']) . "\r\n" . ' ' . base64_encode($raw['exponent2']) . "\r\n" . ' ' . base64_encode($raw['coefficient']) . "\r\n" . ' ' . base64_encode($raw['privateExponent']) . "\r\n" . '
'; break; case self::PRIVATE_FORMAT_PUTTY: if ($num_primes != 2) { return false; } $key = "PuTTY-User-Key-File-2: ssh-rsa\r\nEncryption: "; $encryption = (!empty($this->password) || is_string($this->password)) ? 'aes256-cbc' : 'none'; $key.= $encryption; $key.= "\r\nComment: " . $this->comment . "\r\n"; $public = pack( 'Na*Na*Na*', $this->bitstrlen('ssh-rsa'), 'ssh-rsa', $this->bitstrlen($raw['publicExponent']), $raw['publicExponent'], $this->bitstrlen($raw['modulus']), $raw['modulus'] ); $source = pack( 'Na*Na*Na*Na*', $this->bitstrlen('ssh-rsa'), 'ssh-rsa', $this->bitstrlen($encryption), $encryption, $this->bitstrlen($this->comment), $this->comment, $this->bitstrlen($public), $public ); $public = base64_encode($public); $key.= "Public-Lines: " . (($this->bitstrlen($public) + 63) >> 6) . "\r\n"; $key.= chunk_split($public, 64); $private = pack( 'Na*Na*Na*Na*', $this->bitstrlen($raw['privateExponent']), $raw['privateExponent'], $this->bitstrlen($raw['prime1']), $raw['prime1'], $this->bitstrlen($raw['prime2']), $raw['prime2'], $this->bitstrlen($raw['coefficient']), $raw['coefficient'] ); if (empty($this->password) && !is_string($this->password)) { $source.= pack('Na*', $this->bitstrlen($private), $private); $hashkey = 'putty-private-key-file-mac-key'; } else { $private.= Random::string(16 - ($this->bitstrlen($private) & 15)); $source.= pack('Na*', $this->bitstrlen($private), $private); $sequence = 0; $symkey = ''; while ($this->bitstrlen($symkey) < 32) { $temp = pack('Na*', $sequence++, $this->password); $symkey.= pack('H*', sha1($temp)); } $symkey = $this->bitsubstr($symkey, 0, 32); $crypto = new AES(); $crypto->setKey($symkey); $crypto->disablePadding(); $private = $crypto->encrypt($private); $hashkey = 'putty-private-key-file-mac-key' . $this->password; } $private = base64_encode($private); $key.= 'Private-Lines: ' . (($this->bitstrlen($private) + 63) >> 6) . "\r\n"; $key.= chunk_split($private, 64); $hash = new Hash('sha1'); $hash->setKey(pack('H*', sha1($hashkey))); $key.= 'Private-MAC: ' . bin2hex($hash->hash($source)) . "\r\n"; return $key; default: // eg. self::PRIVATE_FORMAT_PKCS1 $components = array(); foreach ($raw as $name => $value) { $components[$name] = pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength($this->bitstrlen($value)), $value); } $RSAPrivateKey = implode('', $components); if ($num_primes > 2) { $OtherPrimeInfos = ''; for ($i = 3; $i <= $num_primes; $i++) { // OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo // // OtherPrimeInfo ::= SEQUENCE { // prime INTEGER, -- ri // exponent INTEGER, -- di // coefficient INTEGER -- ti // } $OtherPrimeInfo = pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength($this->bitstrlen($primes[$i]->toBytes(true))), $primes[$i]->toBytes(true)); $OtherPrimeInfo.= pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength($this->bitstrlen($exponents[$i]->toBytes(true))), $exponents[$i]->toBytes(true)); $OtherPrimeInfo.= pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength($this->bitstrlen($coefficients[$i]->toBytes(true))), $coefficients[$i]->toBytes(true)); $OtherPrimeInfos.= pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($OtherPrimeInfo)), $OtherPrimeInfo); } $RSAPrivateKey.= pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($OtherPrimeInfos)), $OtherPrimeInfos); } $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($RSAPrivateKey)), $RSAPrivateKey); if ($this->privateKeyFormat == self::PRIVATE_FORMAT_PKCS8) { $rsaOID = pack('H*', '300d06092a864886f70d0101010500'); // hex version of MA0GCSqGSIb3DQEBAQUA $RSAPrivateKey = pack( 'Ca*a*Ca*a*', self::ASN1_INTEGER, "\01\00", $rsaOID, 4, $this->_encodeLength($this->bitstrlen($RSAPrivateKey)), $RSAPrivateKey ); $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($RSAPrivateKey)), $RSAPrivateKey); if (!empty($this->password) || is_string($this->password)) { $salt = Random::string(8); $iterationCount = 2048; $crypto = new DES(); $crypto->setPassword($this->password, 'pbkdf1', 'md5', $salt, $iterationCount); $RSAPrivateKey = $crypto->encrypt($RSAPrivateKey); $parameters = pack( 'Ca*a*Ca*N', self::ASN1_OCTETSTRING, $this->_encodeLength($this->bitstrlen($salt)), $salt, self::ASN1_INTEGER, $this->_encodeLength(4), $iterationCount ); $pbeWithMD5AndDES_CBC = "\x2a\x86\x48\x86\xf7\x0d\x01\x05\x03"; $encryptionAlgorithm = pack( 'Ca*a*Ca*a*', self::ASN1_OBJECT, $this->_encodeLength($this->bitstrlen($pbeWithMD5AndDES_CBC)), $pbeWithMD5AndDES_CBC, self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($parameters)), $parameters ); $RSAPrivateKey = pack( 'Ca*a*Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($encryptionAlgorithm)), $encryptionAlgorithm, self::ASN1_OCTETSTRING, $this->_encodeLength($this->bitstrlen($RSAPrivateKey)), $RSAPrivateKey ); $RSAPrivateKey = pack('Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($RSAPrivateKey)), $RSAPrivateKey); $RSAPrivateKey = "-----BEGIN ENCRYPTED PRIVATE KEY-----\r\n" . chunk_split(base64_encode($RSAPrivateKey), 64) . '-----END ENCRYPTED PRIVATE KEY-----'; } else { $RSAPrivateKey = "-----BEGIN PRIVATE KEY-----\r\n" . chunk_split(base64_encode($RSAPrivateKey), 64) . '-----END PRIVATE KEY-----'; } return $RSAPrivateKey; } if (!empty($this->password) || is_string($this->password)) { $iv = Random::string(8); $symkey = pack('H*', md5($this->password . $iv)); // symkey is short for symmetric key $symkey.= $this->bitsubstr(pack('H*', md5($symkey . $this->password . $iv)), 0, 8); $des = new TripleDES(); $des->setKey($symkey); $des->setIV($iv); $iv = strtoupper(bin2hex($iv)); $RSAPrivateKey = "-----BEGIN RSA PRIVATE KEY-----\r\n" . "Proc-Type: 4,ENCRYPTED\r\n" . "DEK-Info: DES-EDE3-CBC,$iv\r\n" . "\r\n" . chunk_split(base64_encode($des->encrypt($RSAPrivateKey)), 64) . '-----END RSA PRIVATE KEY-----'; } else { $RSAPrivateKey = "-----BEGIN RSA PRIVATE KEY-----\r\n" . chunk_split(base64_encode($RSAPrivateKey), 64) . '-----END RSA PRIVATE KEY-----'; } return $RSAPrivateKey; } } /** * Convert a public key to the appropriate format * * @access private * @see self::setPublicKeyFormat() * @param string $RSAPrivateKey * @return string */ function _convertPublicKey($n, $e) { $signed = $this->publicKeyFormat != self::PUBLIC_FORMAT_XML; $modulus = $n->toBytes($signed); $publicExponent = $e->toBytes($signed); switch ($this->publicKeyFormat) { case self::PUBLIC_FORMAT_RAW: return array('e' => $e->copy(), 'n' => $n->copy()); case self::PUBLIC_FORMAT_XML: return "\r\n" . ' ' . base64_encode($modulus) . "\r\n" . ' ' . base64_encode($publicExponent) . "\r\n" . ''; break; case self::PUBLIC_FORMAT_OPENSSH: // from : // string "ssh-rsa" // mpint e // mpint n $RSAPublicKey = pack('Na*Na*Na*', $this->bitstrlen('ssh-rsa'), 'ssh-rsa', $this->bitstrlen($publicExponent), $publicExponent, $this->bitstrlen($modulus), $modulus); $RSAPublicKey = 'ssh-rsa ' . base64_encode($RSAPublicKey) . ' ' . $this->comment; return $RSAPublicKey; default: // eg. self::PUBLIC_FORMAT_PKCS1_RAW or self::PUBLIC_FORMAT_PKCS1 // from : // RSAPublicKey ::= SEQUENCE { // modulus INTEGER, -- n // publicExponent INTEGER -- e // } $components = array( 'modulus' => pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength($this->bitstrlen($modulus)), $modulus), 'publicExponent' => pack('Ca*a*', self::ASN1_INTEGER, $this->_encodeLength($this->bitstrlen($publicExponent)), $publicExponent) ); $RSAPublicKey = pack( 'Ca*a*a*', self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($components['modulus']) + $this->bitstrlen($components['publicExponent'])), $components['modulus'], $components['publicExponent'] ); if ($this->publicKeyFormat == self::PUBLIC_FORMAT_PKCS1_RAW) { $RSAPublicKey = "-----BEGIN RSA PUBLIC KEY-----\r\n" . chunk_split(base64_encode($RSAPublicKey), 64) . '-----END RSA PUBLIC KEY-----'; } else { // sequence(oid(1.2.840.113549.1.1.1), null)) = rsaEncryption. $rsaOID = pack('H*', '300d06092a864886f70d0101010500'); // hex version of MA0GCSqGSIb3DQEBAQUA $RSAPublicKey = chr(0) . $RSAPublicKey; $RSAPublicKey = chr(3) . $this->_encodeLength($this->bitstrlen($RSAPublicKey)) . $RSAPublicKey; $RSAPublicKey = pack( 'Ca*a*', self::ASN1_SEQUENCE, $this->_encodeLength($this->bitstrlen($rsaOID . $RSAPublicKey)), $rsaOID . $RSAPublicKey ); $RSAPublicKey = "-----BEGIN PUBLIC KEY-----\r\n" . chunk_split(base64_encode($RSAPublicKey), 64) . '-----END PUBLIC KEY-----'; } return $RSAPublicKey; } } /** * Break a public or private key down into its constituant components * * @access private * @see self::_convertPublicKey() * @see self::_convertPrivateKey() * @param string $key * @param int $type * @return array */ function _parseKey($key, $type) { if ($type != self::PUBLIC_FORMAT_RAW && !is_string($key)) { return false; } switch ($type) { case self::PUBLIC_FORMAT_RAW: if (!is_array($key)) { return false; } $components = array(); switch (true) { case isset($key['e']): $components['publicExponent'] = $key['e']->copy(); break; case isset($key['exponent']): $components['publicExponent'] = $key['exponent']->copy(); break; case isset($key['publicExponent']): $components['publicExponent'] = $key['publicExponent']->copy(); break; case isset($key[0]): $components['publicExponent'] = $key[0]->copy(); } switch (true) { case isset($key['n']): $components['modulus'] = $key['n']->copy(); break; case isset($key['modulo']): $components['modulus'] = $key['modulo']->copy(); break; case isset($key['modulus']): $components['modulus'] = $key['modulus']->copy(); break; case isset($key[1]): $components['modulus'] = $key[1]->copy(); } return isset($components['modulus']) && isset($components['publicExponent']) ? $components : false; case self::PRIVATE_FORMAT_PKCS1: case self::PRIVATE_FORMAT_PKCS8: case self::PUBLIC_FORMAT_PKCS1: /* Although PKCS#1 proposes a format that public and private keys can use, encrypting them is "outside the scope" of PKCS#1. PKCS#1 then refers you to PKCS#12 and PKCS#15 if you're wanting to protect private keys, however, that's not what OpenSSL* does. OpenSSL protects private keys by adding two new "fields" to the key - DEK-Info and Proc-Type. These fields are discussed here: http://tools.ietf.org/html/rfc1421#section-4.6.1.1 http://tools.ietf.org/html/rfc1421#section-4.6.1.3 DES-EDE3-CBC as an algorithm, however, is not discussed anywhere, near as I can tell. DES-CBC and DES-EDE are discussed in RFC1423, however, DES-EDE3-CBC isn't, nor is its key derivation function. As is, the definitive authority on this encoding scheme isn't the IETF but rather OpenSSL's own implementation. ie. the implementation *is* the standard and any bugs that may exist in that implementation are part of the standard, as well. * OpenSSL is the de facto standard. It's utilized by OpenSSH and other projects */ if (preg_match('#DEK-Info: (.+),(.+)#', $key, $matches)) { $iv = pack('H*', trim($matches[2])); $symkey = pack('H*', md5($this->password . $this->bitsubstr($iv, 0, 8))); // symkey is short for symmetric key $symkey.= pack('H*', md5($symkey . $this->password . $this->bitsubstr($iv, 0, 8))); // remove the Proc-Type / DEK-Info sections as they're no longer needed $key = preg_replace('#^(?:Proc-Type|DEK-Info): .*#m', '', $key); $ciphertext = $this->_extractBER($key); if ($ciphertext === false) { $ciphertext = $key; } switch ($matches[1]) { case 'AES-256-CBC': $crypto = new AES(); break; case 'AES-128-CBC': $symkey = $this->bitsubstr($symkey, 0, 16); $crypto = new AES(); break; case 'DES-EDE3-CFB': $crypto = new TripleDES(Base::MODE_CFB); break; case 'DES-EDE3-CBC': $symkey = $this->bitsubstr($symkey, 0, 24); $crypto = new TripleDES(); break; case 'DES-CBC': $crypto = new DES(); break; default: return false; } $crypto->setKey($symkey); $crypto->setIV($iv); $decoded = $crypto->decrypt($ciphertext); } else { $decoded = $this->_extractBER($key); } if ($decoded !== false) { $key = $decoded; } $components = array(); if (ord($this->_string_shift($key)) != self::ASN1_SEQUENCE) { return false; } if ($this->_decodeLength($key) != $this->bitstrlen($key)) { return false; } $tag = ord($this->_string_shift($key)); /* intended for keys for which OpenSSL's asn1parse returns the following: 0:d=0 hl=4 l= 631 cons: SEQUENCE 4:d=1 hl=2 l= 1 prim: INTEGER :00 7:d=1 hl=2 l= 13 cons: SEQUENCE 9:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption 20:d=2 hl=2 l= 0 prim: NULL 22:d=1 hl=4 l= 609 prim: OCTET STRING ie. PKCS8 keys*/ if ($tag == self::ASN1_INTEGER && $this->bitsubstr($key, 0, 3) == "\x01\x00\x30") { $this->_string_shift($key, 3); $tag = self::ASN1_SEQUENCE; } if ($tag == self::ASN1_SEQUENCE) { $temp = $this->_string_shift($key, $this->_decodeLength($key)); if (ord($this->_string_shift($temp)) != self::ASN1_OBJECT) { return false; } $length = $this->_decodeLength($temp); switch ($this->_string_shift($temp, $length)) { case "\x2a\x86\x48\x86\xf7\x0d\x01\x01\x01": // rsaEncryption break; case "\x2a\x86\x48\x86\xf7\x0d\x01\x05\x03": // pbeWithMD5AndDES-CBC /* PBEParameter ::= SEQUENCE { salt OCTET STRING (SIZE(8)), iterationCount INTEGER } */ if (ord($this->_string_shift($temp)) != self::ASN1_SEQUENCE) { return false; } if ($this->_decodeLength($temp) != $this->bitstrlen($temp)) { return false; } $this->_string_shift($temp); // assume it's an octet string $salt = $this->_string_shift($temp, $this->_decodeLength($temp)); if (ord($this->_string_shift($temp)) != self::ASN1_INTEGER) { return false; } $this->_decodeLength($temp); list(, $iterationCount) = unpack('N', str_pad($temp, 4, chr(0), STR_PAD_LEFT)); $this->_string_shift($key); // assume it's an octet string $length = $this->_decodeLength($key); if ($this->bitstrlen($key) != $length) { return false; } $crypto = new DES(); $crypto->setPassword($this->password, 'pbkdf1', 'md5', $salt, $iterationCount); $key = $crypto->decrypt($key); if ($key === false) { return false; } return $this->_parseKey($key, self::PRIVATE_FORMAT_PKCS1); default: return false; } /* intended for keys for which OpenSSL's asn1parse returns the following: 0:d=0 hl=4 l= 290 cons: SEQUENCE 4:d=1 hl=2 l= 13 cons: SEQUENCE 6:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption 17:d=2 hl=2 l= 0 prim: NULL 19:d=1 hl=4 l= 271 prim: BIT STRING */ $tag = ord($this->_string_shift($key)); // skip over the BIT STRING / OCTET STRING tag $this->_decodeLength($key); // skip over the BIT STRING / OCTET STRING length // "The initial octet shall encode, as an unsigned binary integer wtih bit 1 as the least significant bit, the number of // unused bits in the final subsequent octet. The number shall be in the range zero to seven." // -- http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf (section 8.6.2.2) if ($tag == self::ASN1_BITSTRING) { $this->_string_shift($key); } if (ord($this->_string_shift($key)) != self::ASN1_SEQUENCE) { return false; } if ($this->_decodeLength($key) != $this->bitstrlen($key)) { return false; } $tag = ord($this->_string_shift($key)); } if ($tag != self::ASN1_INTEGER) { return false; } $length = $this->_decodeLength($key); $temp = $this->_string_shift($key, $length); if ($this->bitstrlen($temp) != 1 || ord($temp) > 2) { $components['modulus'] = new BigInteger($temp, 256); $this->_string_shift($key); // skip over self::ASN1_INTEGER $length = $this->_decodeLength($key); $components[$type == self::PUBLIC_FORMAT_PKCS1 ? 'publicExponent' : 'privateExponent'] = new BigInteger($this->_string_shift($key, $length), 256); return $components; } if (ord($this->_string_shift($key)) != self::ASN1_INTEGER) { return false; } $length = $this->_decodeLength($key); $components['modulus'] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['publicExponent'] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['privateExponent'] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['primes'] = array(1 => new BigInteger($this->_string_shift($key, $length), 256)); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['primes'][] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['exponents'] = array(1 => new BigInteger($this->_string_shift($key, $length), 256)); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['exponents'][] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['coefficients'] = array(2 => new BigInteger($this->_string_shift($key, $length), 256)); if (!empty($key)) { if (ord($this->_string_shift($key)) != self::ASN1_SEQUENCE) { return false; } $this->_decodeLength($key); while (!empty($key)) { if (ord($this->_string_shift($key)) != self::ASN1_SEQUENCE) { return false; } $this->_decodeLength($key); $key = $this->bitsubstr($key, 1); $length = $this->_decodeLength($key); $components['primes'][] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['exponents'][] = new BigInteger($this->_string_shift($key, $length), 256); $this->_string_shift($key); $length = $this->_decodeLength($key); $components['coefficients'][] = new BigInteger($this->_string_shift($key, $length), 256); } } return $components; case self::PUBLIC_FORMAT_OPENSSH: $parts = explode(' ', $key, 3); $key = isset($parts[1]) ? base64_decode($parts[1]) : false; if ($key === false) { return false; } $comment = isset($parts[2]) ? $parts[2] : false; $cleanup = $this->bitsubstr($key, 0, 11) == "\0\0\0\7ssh-rsa"; if ($this->bitstrlen($key) <= 4) { return false; } extract(unpack('Nlength', $this->_string_shift($key, 4))); $publicExponent = new BigInteger($this->_string_shift($key, $length), -256); if ($this->bitstrlen($key) <= 4) { return false; } extract(unpack('Nlength', $this->_string_shift($key, 4))); $modulus = new BigInteger($this->_string_shift($key, $length), -256); if ($cleanup && $this->bitstrlen($key)) { if ($this->bitstrlen($key) <= 4) { return false; } extract(unpack('Nlength', $this->_string_shift($key, 4))); $realModulus = new BigInteger($this->_string_shift($key, $length), -256); return $this->bitstrlen($key) ? false : array( 'modulus' => $realModulus, 'publicExponent' => $modulus, 'comment' => $comment ); } else { return $this->bitstrlen($key) ? false : array( 'modulus' => $modulus, 'publicExponent' => $publicExponent, 'comment' => $comment ); } // http://www.w3.org/TR/xmldsig-core/#sec-RSAKeyValue // http://en.wikipedia.org/wiki/XML_Signature case self::PRIVATE_FORMAT_XML: case self::PUBLIC_FORMAT_XML: $this->components = array(); $xml = xml_parser_create('UTF-8'); xml_set_object($xml, $this); xml_set_element_handler($xml, '_start_element_handler', '_stop_element_handler'); xml_set_character_data_handler($xml, '_data_handler'); // add to account for "dangling" tags like ... that are sometimes added if (!xml_parse($xml, '' . $key . '')) { return false; } return isset($this->components['modulus']) && isset($this->components['publicExponent']) ? $this->components : false; // from PuTTY's SSHPUBK.C case self::PRIVATE_FORMAT_PUTTY: $components = array(); $key = preg_split('#\r\n|\r|\n#', $key); $type = trim(preg_replace('#PuTTY-User-Key-File-2: (.+)#', '$1', $key[0])); if ($type != 'ssh-rsa') { return false; } $encryption = trim(preg_replace('#Encryption: (.+)#', '$1', $key[1])); $comment = trim(preg_replace('#Comment: (.+)#', '$1', $key[2])); $publicLength = trim(preg_replace('#Public-Lines: (\d+)#', '$1', $key[3])); $public = base64_decode(implode('', array_map('trim', array_slice($key, 4, $publicLength)))); $public = $this->bitsubstr($public, 11); extract(unpack('Nlength', $this->_string_shift($public, 4))); $components['publicExponent'] = new BigInteger($this->_string_shift($public, $length), -256); extract(unpack('Nlength', $this->_string_shift($public, 4))); $components['modulus'] = new BigInteger($this->_string_shift($public, $length), -256); $privateLength = trim(preg_replace('#Private-Lines: (\d+)#', '$1', $key[$publicLength + 4])); $private = base64_decode(implode('', array_map('trim', array_slice($key, $publicLength + 5, $privateLength)))); switch ($encryption) { case 'aes256-cbc': $symkey = ''; $sequence = 0; while ($this->bitstrlen($symkey) < 32) { $temp = pack('Na*', $sequence++, $this->password); $symkey.= pack('H*', sha1($temp)); } $symkey = $this->bitsubstr($symkey, 0, 32); $crypto = new AES(); } if ($encryption != 'none') { $crypto->setKey($symkey); $crypto->disablePadding(); $private = $crypto->decrypt($private); if ($private === false) { return false; } } extract(unpack('Nlength', $this->_string_shift($private, 4))); if ($this->bitstrlen($private) < $length) { return false; } $components['privateExponent'] = new BigInteger($this->_string_shift($private, $length), -256); extract(unpack('Nlength', $this->_string_shift($private, 4))); if ($this->bitstrlen($private) < $length) { return false; } $components['primes'] = array(1 => new BigInteger($this->_string_shift($private, $length), -256)); extract(unpack('Nlength', $this->_string_shift($private, 4))); if ($this->bitstrlen($private) < $length) { return false; } $components['primes'][] = new BigInteger($this->_string_shift($private, $length), -256); $temp = $components['primes'][1]->subtract($this->one); $components['exponents'] = array(1 => $components['publicExponent']->modInverse($temp)); $temp = $components['primes'][2]->subtract($this->one); $components['exponents'][] = $components['publicExponent']->modInverse($temp); extract(unpack('Nlength', $this->_string_shift($private, 4))); if ($this->bitstrlen($private) < $length) { return false; } $components['coefficients'] = array(2 => new BigInteger($this->_string_shift($private, $length), -256)); return $components; } } /** * Returns the key size * * More specifically, this returns the size of the modulo in bits. * * @access public * @return int */ function getSize() { return !isset($this->modulus) ? 0 : $this->bitstrlen($this->modulus->toBits()); } /** * Start Element Handler * * Called by xml_set_element_handler() * * @access private * @param resource $parser * @param string $name * @param array $attribs */ function _start_element_handler($parser, $name, $attribs) { //$name = strtoupper($name); switch ($name) { case 'MODULUS': $this->current = &$this->components['modulus']; break; case 'EXPONENT': $this->current = &$this->components['publicExponent']; break; case 'P': $this->current = &$this->components['primes'][1]; break; case 'Q': $this->current = &$this->components['primes'][2]; break; case 'DP': $this->current = &$this->components['exponents'][1]; break; case 'DQ': $this->current = &$this->components['exponents'][2]; break; case 'INVERSEQ': $this->current = &$this->components['coefficients'][2]; break; case 'D': $this->current = &$this->components['privateExponent']; } $this->current = ''; } /** * Stop Element Handler * * Called by xml_set_element_handler() * * @access private * @param resource $parser * @param string $name */ function _stop_element_handler($parser, $name) { if (isset($this->current)) { $this->current = new BigInteger(base64_decode($this->current), 256); unset($this->current); } } /** * Data Handler * * Called by xml_set_character_data_handler() * * @access private * @param resource $parser * @param string $data */ function _data_handler($parser, $data) { if (!isset($this->current) || is_object($this->current)) { return; } $this->current.= trim($data); } /** * Loads a public or private key * * Returns true on success and false on failure (ie. an incorrect password was provided or the key was malformed) * * @access public * @param string $key * @param int $type optional */ function loadKey($key, $type = false) { if ($key instanceof RSA) { $this->privateKeyFormat = $key->privateKeyFormat; $this->publicKeyFormat = $key->publicKeyFormat; $this->k = $key->k; $this->hLen = $key->hLen; $this->sLen = $key->sLen; $this->mgfHLen = $key->mgfHLen; $this->encryptionMode = $key->encryptionMode; $this->signatureMode = $key->signatureMode; $this->password = $key->password; $this->configFile = $key->configFile; $this->comment = $key->comment; if (is_object($key->hash)) { $this->hash = new Hash($key->hash->getHash()); } if (is_object($key->mgfHash)) { $this->mgfHash = new Hash($key->mgfHash->getHash()); } if (is_object($key->modulus)) { $this->modulus = $key->modulus->copy(); } if (is_object($key->exponent)) { $this->exponent = $key->exponent->copy(); } if (is_object($key->publicExponent)) { $this->publicExponent = $key->publicExponent->copy(); } $this->primes = array(); $this->exponents = array(); $this->coefficients = array(); foreach ($this->primes as $prime) { $this->primes[] = $prime->copy(); } foreach ($this->exponents as $exponent) { $this->exponents[] = $exponent->copy(); } foreach ($this->coefficients as $coefficient) { $this->coefficients[] = $coefficient->copy(); } return true; } if ($type === false) { $types = array( self::PUBLIC_FORMAT_RAW, self::PRIVATE_FORMAT_PKCS1, self::PRIVATE_FORMAT_XML, self::PRIVATE_FORMAT_PUTTY, self::PUBLIC_FORMAT_OPENSSH ); foreach ($types as $type) { $components = $this->_parseKey($key, $type); if ($components !== false) { break; } } } else { $components = $this->_parseKey($key, $type); } if ($components === false) { $this->comment = null; $this->modulus = null; $this->k = null; $this->exponent = null; $this->primes = null; $this->exponents = null; $this->coefficients = null; $this->publicExponent = null; return false; } if (isset($components['comment']) && $components['comment'] !== false) { $this->comment = $components['comment']; } $this->modulus = $components['modulus']; $this->k = $this->bitstrlen($this->modulus->toBytes()); $this->exponent = isset($components['privateExponent']) ? $components['privateExponent'] : $components['publicExponent']; if (isset($components['primes'])) { $this->primes = $components['primes']; $this->exponents = $components['exponents']; $this->coefficients = $components['coefficients']; $this->publicExponent = $components['publicExponent']; } else { $this->primes = array(); $this->exponents = array(); $this->coefficients = array(); $this->publicExponent = false; } switch ($type) { case self::PUBLIC_FORMAT_OPENSSH: case self::PUBLIC_FORMAT_RAW: $this->setPublicKey(); break; case self::PRIVATE_FORMAT_PKCS1: switch (true) { case strpos($key, '-BEGIN PUBLIC KEY-') !== false: case strpos($key, '-BEGIN RSA PUBLIC KEY-') !== false: $this->setPublicKey(); } } return true; } /** * Sets the password * * Private keys can be encrypted with a password. To unset the password, pass in the empty string or false. * Or rather, pass in $password such that empty($password) && !is_string($password) is true. * * @see self::createKey() * @see self::loadKey() * @access public * @param string $password */ function setPassword($password = false) { $this->password = $password; } /** * Defines the public key * * Some private key formats define the public exponent and some don't. Those that don't define it are problematic when * used in certain contexts. For example, in SSH-2, RSA authentication works by sending the public key along with a * message signed by the private key to the server. The SSH-2 server looks the public key up in an index of public keys * and if it's present then proceeds to verify the signature. Problem is, if your private key doesn't include the public * exponent this won't work unless you manually add the public exponent. phpseclib tries to guess if the key being used * is the public key but in the event that it guesses incorrectly you might still want to explicitly set the key as being * public. * * Do note that when a new key is loaded the index will be cleared. * * Returns true on success, false on failure * * @see self::getPublicKey() * @access public * @param string $key optional * @param int $type optional * @return bool */ function setPublicKey($key = false, $type = false) { // if a public key has already been loaded return false if (!empty($this->publicExponent)) { return false; } if ($key === false && !empty($this->modulus)) { $this->publicExponent = $this->exponent; return true; } if ($type === false) { $types = array( self::PUBLIC_FORMAT_RAW, self::PUBLIC_FORMAT_PKCS1, self::PUBLIC_FORMAT_XML, self::PUBLIC_FORMAT_OPENSSH ); foreach ($types as $type) { $components = $this->_parseKey($key, $type); if ($components !== false) { break; } } } else { $components = $this->_parseKey($key, $type); } if ($components === false) { return false; } if (empty($this->modulus) || !$this->modulus->equals($components['modulus'])) { $this->modulus = $components['modulus']; $this->exponent = $this->publicExponent = $components['publicExponent']; return true; } $this->publicExponent = $components['publicExponent']; return true; } /** * Defines the private key * * If phpseclib guessed a private key was a public key and loaded it as such it might be desirable to force * phpseclib to treat the key as a private key. This function will do that. * * Do note that when a new key is loaded the index will be cleared. * * Returns true on success, false on failure * * @see self::getPublicKey() * @access public * @param string $key optional * @param int $type optional * @return bool */ function setPrivateKey($key = false, $type = false) { if ($key === false && !empty($this->publicExponent)) { $this->publicExponent = false; return true; } $rsa = new RSA(); if (!$rsa->loadKey($key, $type)) { return false; } $rsa->publicExponent = false; // don't overwrite the old key if the new key is invalid $this->loadKey($rsa); return true; } /** * Returns the public key * * The public key is only returned under two circumstances - if the private key had the public key embedded within it * or if the public key was set via setPublicKey(). If the currently loaded key is supposed to be the public key this * function won't return it since this library, for the most part, doesn't distinguish between public and private keys. * * @see self::getPublicKey() * @access public * @param string $key * @param int $type optional */ function getPublicKey($type = self::PUBLIC_FORMAT_PKCS8) { if (empty($this->modulus) || empty($this->publicExponent)) { return false; } $oldFormat = $this->publicKeyFormat; $this->publicKeyFormat = $type; $temp = $this->_convertPublicKey($this->modulus, $this->publicExponent); $this->publicKeyFormat = $oldFormat; return $temp; } /** * Returns the public key's fingerprint * * The public key's fingerprint is returned, which is equivalent to running `ssh-keygen -lf rsa.pub`. If there is * no public key currently loaded, false is returned. * Example output (md5): "c1:b1:30:29:d7:b8:de:6c:97:77:10:d7:46:41:63:87" (as specified by RFC 4716) * * @access public * @param string $algorithm The hashing algorithm to be used. Valid options are 'md5' and 'sha256'. False is returned * for invalid values. * @return mixed */ function getPublicKeyFingerprint($algorithm = 'md5') { if (empty($this->modulus) || empty($this->publicExponent)) { return false; } $modulus = $this->modulus->toBytes(true); $publicExponent = $this->publicExponent->toBytes(true); $RSAPublicKey = pack('Na*Na*Na*', $this->bitstrlen('ssh-rsa'), 'ssh-rsa', $this->bitstrlen($publicExponent), $publicExponent, $this->bitstrlen($modulus), $modulus); switch ($algorithm) { case 'sha256': $hash = new Hash('sha256'); $base = base64_encode($hash->hash($RSAPublicKey)); return $this->bitsubstr($base, 0, $this->bitstrlen($base) - 1); case 'md5': return $this->bitsubstr(chunk_split(md5($RSAPublicKey), 2, ':'), 0, -1); default: return false; } } /** * Returns the private key * * The private key is only returned if the currently loaded key contains the constituent prime numbers. * * @see self::getPublicKey() * @access public * @param string $key * @param int $type optional * @return mixed */ function getPrivateKey($type = self::PUBLIC_FORMAT_PKCS1) { if (empty($this->primes)) { return false; } $oldFormat = $this->privateKeyFormat; $this->privateKeyFormat = $type; $temp = $this->_convertPrivateKey($this->modulus, $this->publicExponent, $this->exponent, $this->primes, $this->exponents, $this->coefficients); $this->privateKeyFormat = $oldFormat; return $temp; } /** * Returns a minimalistic private key * * Returns the private key without the prime number constituants. Structurally identical to a public key that * hasn't been set as the public key * * @see self::getPrivateKey() * @access private * @param string $key * @param int $type optional */ function _getPrivatePublicKey($mode = self::PUBLIC_FORMAT_PKCS8) { if (empty($this->modulus) || empty($this->exponent)) { return false; } $oldFormat = $this->publicKeyFormat; $this->publicKeyFormat = $mode; $temp = $this->_convertPublicKey($this->modulus, $this->exponent); $this->publicKeyFormat = $oldFormat; return $temp; } /** * __toString() magic method * * @access public * @return string */ function __toString() { $key = $this->getPrivateKey($this->privateKeyFormat); if ($key !== false) { return $key; } $key = $this->_getPrivatePublicKey($this->publicKeyFormat); return $key !== false ? $key : ''; } /** * __clone() magic method * * @access public * @return Crypt_RSA */ function __clone() { $key = new RSA(); $key->loadKey($this); return $key; } /** * Generates the smallest and largest numbers requiring $bits bits * * @access private * @param int $bits * @return array */ function _generateMinMax($bits) { $bytes = $bits >> 3; $min = str_repeat(chr(0), $bytes); $max = str_repeat(chr(0xFF), $bytes); $msb = $bits & 7; if ($msb) { $min = chr(1 << ($msb - 1)) . $min; $max = chr((1 << $msb) - 1) . $max; } else { $min[0] = chr(0x80); } return array( 'min' => new BigInteger($min, 256), 'max' => new BigInteger($max, 256) ); } /** * DER-decode the length * * DER supports lengths up to (2**8)**127, however, we'll only support lengths up to (2**8)**4. See * {@link http://itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf#p=13 X.690 paragraph 8.1.3} for more information. * * @access private * @param string $string * @return int */ function _decodeLength(&$string) { $length = ord($this->_string_shift($string)); if ($length & 0x80) { // definite length, long form $length&= 0x7F; $temp = $this->_string_shift($string, $length); list(, $length) = unpack('N', $this->bitsubstr(str_pad($temp, 4, chr(0), STR_PAD_LEFT), -4)); } return $length; } /** * DER-encode the length * * DER supports lengths up to (2**8)**127, however, we'll only support lengths up to (2**8)**4. See * {@link http://itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf#p=13 X.690 paragraph 8.1.3} for more information. * * @access private * @param int $length * @return string */ function _encodeLength($length) { if ($length <= 0x7F) { return chr($length); } $temp = ltrim(pack('N', $length), chr(0)); return pack('Ca*', 0x80 | $this->bitstrlen($temp), $temp); } /** * String Shift * * Inspired by array_shift * * @param string $string * @param int $index * @return string * @access private */ function _string_shift(&$string, $index = 1) { $substr = $this->bitsubstr($string, 0, $index); $string = $this->bitsubstr($string, $index); return $substr; } /** * Determines the private key format * * @see self::createKey() * @access public * @param int $format */ function setPrivateKeyFormat($format) { $this->privateKeyFormat = $format; } /** * Determines the public key format * * @see self::createKey() * @access public * @param int $format */ function setPublicKeyFormat($format) { $this->publicKeyFormat = $format; } /** * Determines which hashing function should be used * * Used with signature production / verification and (if the encryption mode is self::ENCRYPTION_OAEP) encryption and * decryption. If $hash isn't supported, sha1 is used. * * @access public * @param string $hash */ function setHash($hash) { // \phpseclib\Crypt\Hash supports algorithms that PKCS#1 doesn't support. md5-96 and sha1-96, for example. switch ($hash) { case 'md2': case 'md5': case 'sha1': case 'sha256': case 'sha384': case 'sha512': $this->hash = new Hash($hash); $this->hashName = $hash; break; default: $this->hash = new Hash('sha1'); $this->hashName = 'sha1'; } $this->hLen = $this->hash->getLength(); } /** * Determines which hashing function should be used for the mask generation function * * The mask generation function is used by self::ENCRYPTION_OAEP and self::SIGNATURE_PSS and although it's * best if Hash and MGFHash are set to the same thing this is not a requirement. * * @access public * @param string $hash */ function setMGFHash($hash) { // \phpseclib\Crypt\Hash supports algorithms that PKCS#1 doesn't support. md5-96 and sha1-96, for example. switch ($hash) { case 'md2': case 'md5': case 'sha1': case 'sha256': case 'sha384': case 'sha512': $this->mgfHash = new Hash($hash); break; default: $this->mgfHash = new Hash('sha1'); } $this->mgfHLen = $this->mgfHash->getLength(); } /** * Determines the salt length * * To quote from {@link http://tools.ietf.org/html/rfc3447#page-38 RFC3447#page-38}: * * Typical salt lengths in octets are hLen (the length of the output * of the hash function Hash) and 0. * * @access public * @param int $format */ function setSaltLength($sLen) { $this->sLen = $sLen; } /** * Integer-to-Octet-String primitive * * See {@link http://tools.ietf.org/html/rfc3447#section-4.1 RFC3447#section-4.1}. * * @access private * @param \phpseclib\Math\BigInteger $x * @param int $xLen * @return string */ function _i2osp($x, $xLen) { $x = $x->toBytes(); if ($this->bitstrlen($x) > $xLen) { user_error('Integer too large'); return false; } return str_pad($x, $xLen, chr(0), STR_PAD_LEFT); } /** * Octet-String-to-Integer primitive * * See {@link http://tools.ietf.org/html/rfc3447#section-4.2 RFC3447#section-4.2}. * * @access private * @param string $x * @return \phpseclib\Math\BigInteger */ function _os2ip($x) { return new BigInteger($x, 256); } /** * Exponentiate with or without Chinese Remainder Theorem * * See {@link http://tools.ietf.org/html/rfc3447#section-5.1.1 RFC3447#section-5.1.2}. * * @access private * @param \phpseclib\Math\BigInteger $x * @return \phpseclib\Math\BigInteger */ function _exponentiate($x) { switch (true) { case empty($this->primes): case $this->primes[1]->equals($this->zero): case empty($this->coefficients): case $this->coefficients[2]->equals($this->zero): case empty($this->exponents): case $this->exponents[1]->equals($this->zero): return $x->modPow($this->exponent, $this->modulus); } $num_primes = count($this->primes); if (defined('CRYPT_RSA_DISABLE_BLINDING')) { $m_i = array( 1 => $x->modPow($this->exponents[1], $this->primes[1]), 2 => $x->modPow($this->exponents[2], $this->primes[2]) ); $h = $m_i[1]->subtract($m_i[2]); $h = $h->multiply($this->coefficients[2]); list(, $h) = $h->divide($this->primes[1]); $m = $m_i[2]->add($h->multiply($this->primes[2])); $r = $this->primes[1]; for ($i = 3; $i <= $num_primes; $i++) { $m_i = $x->modPow($this->exponents[$i], $this->primes[$i]); $r = $r->multiply($this->primes[$i - 1]); $h = $m_i->subtract($m); $h = $h->multiply($this->coefficients[$i]); list(, $h) = $h->divide($this->primes[$i]); $m = $m->add($r->multiply($h)); } } else { $smallest = $this->primes[1]; for ($i = 2; $i <= $num_primes; $i++) { if ($smallest->compare($this->primes[$i]) > 0) { $smallest = $this->primes[$i]; } } $one = new BigInteger(1); $r = $one->random($one, $smallest->subtract($one)); $m_i = array( 1 => $this->_blind($x, $r, 1), 2 => $this->_blind($x, $r, 2) ); $h = $m_i[1]->subtract($m_i[2]); $h = $h->multiply($this->coefficients[2]); list(, $h) = $h->divide($this->primes[1]); $m = $m_i[2]->add($h->multiply($this->primes[2])); $r = $this->primes[1]; for ($i = 3; $i <= $num_primes; $i++) { $m_i = $this->_blind($x, $r, $i); $r = $r->multiply($this->primes[$i - 1]); $h = $m_i->subtract($m); $h = $h->multiply($this->coefficients[$i]); list(, $h) = $h->divide($this->primes[$i]); $m = $m->add($r->multiply($h)); } } return $m; } /** * Performs RSA Blinding * * Protects against timing attacks by employing RSA Blinding. * Returns $x->modPow($this->exponents[$i], $this->primes[$i]) * * @access private * @param \phpseclib\Math\BigInteger $x * @param \phpseclib\Math\BigInteger $r * @param int $i * @return \phpseclib\Math\BigInteger */ function _blind($x, $r, $i) { $x = $x->multiply($r->modPow($this->publicExponent, $this->primes[$i])); $x = $x->modPow($this->exponents[$i], $this->primes[$i]); $r = $r->modInverse($this->primes[$i]); $x = $x->multiply($r); list(, $x) = $x->divide($this->primes[$i]); return $x; } /** * Performs blinded RSA equality testing * * Protects against a particular type of timing attack described. * * See {@link http://codahale.com/a-lesson-in-timing-attacks/ A Lesson In Timing Attacks (or, Don't use MessageDigest.isEquals)} * * Thanks for the heads up singpolyma! * * @access private * @param string $x * @param string $y * @return bool */ function _equals($x, $y) { if ($this->bitstrlen($x) != $this->bitstrlen($y)) { return false; } $result = 0; for ($i = 0; $i < $this->bitstrlen($x); $i++) { $result |= ord($x[$i]) ^ ord($y[$i]); } return $result == 0; } /** * RSAEP * * See {@link http://tools.ietf.org/html/rfc3447#section-5.1.1 RFC3447#section-5.1.1}. * * @access private * @param \phpseclib\Math\BigInteger $m * @return \phpseclib\Math\BigInteger */ function _rsaep($m) { if ($m->compare($this->zero) < 0 || $m->compare($this->modulus) > 0) { user_error('Message representative out of range'); return false; } return $this->_exponentiate($m); } /** * RSADP * * See {@link http://tools.ietf.org/html/rfc3447#section-5.1.2 RFC3447#section-5.1.2}. * * @access private * @param \phpseclib\Math\BigInteger $c * @return \phpseclib\Math\BigInteger */ function _rsadp($c) { if ($c->compare($this->zero) < 0 || $c->compare($this->modulus) > 0) { user_error('Ciphertext representative out of range'); return false; } return $this->_exponentiate($c); } /** * RSASP1 * * See {@link http://tools.ietf.org/html/rfc3447#section-5.2.1 RFC3447#section-5.2.1}. * * @access private * @param \phpseclib\Math\BigInteger $m * @return \phpseclib\Math\BigInteger */ function _rsasp1($m) { if ($m->compare($this->zero) < 0 || $m->compare($this->modulus) > 0) { user_error('Message representative out of range'); return false; } return $this->_exponentiate($m); } /** * RSAVP1 * * See {@link http://tools.ietf.org/html/rfc3447#section-5.2.2 RFC3447#section-5.2.2}. * * @access private * @param \phpseclib\Math\BigInteger $s * @return \phpseclib\Math\BigInteger */ function _rsavp1($s) { if ($s->compare($this->zero) < 0 || $s->compare($this->modulus) > 0) { user_error('Signature representative out of range'); return false; } return $this->_exponentiate($s); } /** * MGF1 * * See {@link http://tools.ietf.org/html/rfc3447#appendix-B.2.1 RFC3447#appendix-B.2.1}. * * @access private * @param string $mgfSeed * @param int $mgfLen * @return string */ function _mgf1($mgfSeed, $maskLen) { // if $maskLen would yield strings larger than 4GB, PKCS#1 suggests a "Mask too long" error be output. $t = ''; $count = ceil($maskLen / $this->mgfHLen); for ($i = 0; $i < $count; $i++) { $c = pack('N', $i); $t.= $this->mgfHash->hash($mgfSeed . $c); } return $this->bitsubstr($t, 0, $maskLen); } /** * RSAES-OAEP-ENCRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.1.1 RFC3447#section-7.1.1} and * {http://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding OAES}. * * @access private * @param string $m * @param string $l * @return string */ function _rsaes_oaep_encrypt($m, $l = '') { $mLen = $this->bitstrlen($m); // Length checking // if $l is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. if ($mLen > $this->k - 2 * $this->hLen - 2) { user_error('Message too long'); return false; } // EME-OAEP encoding $lHash = $this->hash->hash($l); $ps = str_repeat(chr(0), $this->k - $mLen - 2 * $this->hLen - 2); $db = $lHash . $ps . chr(1) . $m; $seed = Random::string($this->hLen); $dbMask = $this->_mgf1($seed, $this->k - $this->hLen - 1); $maskedDB = $db ^ $dbMask; $seedMask = $this->_mgf1($maskedDB, $this->hLen); $maskedSeed = $seed ^ $seedMask; $em = chr(0) . $maskedSeed . $maskedDB; // RSA encryption $m = $this->_os2ip($em); $c = $this->_rsaep($m); $c = $this->_i2osp($c, $this->k); // Output the ciphertext C return $c; } /** * RSAES-OAEP-DECRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.1.2 RFC3447#section-7.1.2}. The fact that the error * messages aren't distinguishable from one another hinders debugging, but, to quote from RFC3447#section-7.1.2: * * Note. Care must be taken to ensure that an opponent cannot * distinguish the different error conditions in Step 3.g, whether by * error message or timing, or, more generally, learn partial * information about the encoded message EM. Otherwise an opponent may * be able to obtain useful information about the decryption of the * ciphertext C, leading to a chosen-ciphertext attack such as the one * observed by Manger [36]. * * As for $l... to quote from {@link http://tools.ietf.org/html/rfc3447#page-17 RFC3447#page-17}: * * Both the encryption and the decryption operations of RSAES-OAEP take * the value of a label L as input. In this version of PKCS #1, L is * the empty string; other uses of the label are outside the scope of * this document. * * @access private * @param string $c * @param string $l * @return string */ function _rsaes_oaep_decrypt($c, $l = '') { // Length checking // if $l is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. if ($this->bitstrlen($c) != $this->k || $this->k < 2 * $this->hLen + 2) { user_error('Decryption error'); return false; } // RSA decryption $c = $this->_os2ip($c); $m = $this->_rsadp($c); if ($m === false) { user_error('Decryption error'); return false; } $em = $this->_i2osp($m, $this->k); // EME-OAEP decoding $lHash = $this->hash->hash($l); $y = ord($em[0]); $maskedSeed = $this->bitsubstr($em, 1, $this->hLen); $maskedDB = $this->bitsubstr($em, $this->hLen + 1); $seedMask = $this->_mgf1($maskedDB, $this->hLen); $seed = $maskedSeed ^ $seedMask; $dbMask = $this->_mgf1($seed, $this->k - $this->hLen - 1); $db = $maskedDB ^ $dbMask; $lHash2 = $this->bitsubstr($db, 0, $this->hLen); $m = $this->bitsubstr($db, $this->hLen); if (!$this->_equals($lHash, $lHash2)) { user_error('Decryption error'); return false; } $m = ltrim($m, chr(0)); if (ord($m[0]) != 1) { user_error('Decryption error'); return false; } // Output the message M return $this->bitsubstr($m, 1); } /** * Raw Encryption / Decryption * * Doesn't use padding and is not recommended. * * @access private * @param string $m * @return string */ function _raw_encrypt($m) { $temp = $this->_os2ip($m); $temp = $this->_rsaep($temp); return $this->_i2osp($temp, $this->k); } /** * RSAES-PKCS1-V1_5-ENCRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.2.1 RFC3447#section-7.2.1}. * * @access private * @param string $m * @return string */ function _rsaes_pkcs1_v1_5_encrypt($m) { $mLen = $this->bitstrlen($m); // Length checking if ($mLen > $this->k - 11) { user_error('Message too long'); return false; } // EME-PKCS1-v1_5 encoding $psLen = $this->k - $mLen - 3; $ps = ''; while ($this->bitstrlen($ps) != $psLen) { $temp = Random::string($psLen - $this->bitstrlen($ps)); $temp = str_replace("\x00", '', $temp); $ps.= $temp; } $type = 2; // see the comments of _rsaes_pkcs1_v1_5_decrypt() to understand why this is being done if (defined('CRYPT_RSA_PKCS15_COMPAT') && (!isset($this->publicExponent) || $this->exponent !== $this->publicExponent)) { $type = 1; // "The padding string PS shall consist of k-3-||D|| octets. ... for block type 01, they shall have value FF" $ps = str_repeat("\xFF", $psLen); } $em = chr(0) . chr($type) . $ps . chr(0) . $m; // RSA encryption $m = $this->_os2ip($em); $c = $this->_rsaep($m); $c = $this->_i2osp($c, $this->k); // Output the ciphertext C return $c; } /** * RSAES-PKCS1-V1_5-DECRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.2.2 RFC3447#section-7.2.2}. * * For compatibility purposes, this function departs slightly from the description given in RFC3447. * The reason being that RFC2313#section-8.1 (PKCS#1 v1.5) states that ciphertext's encrypted by the * private key should have the second byte set to either 0 or 1 and that ciphertext's encrypted by the * public key should have the second byte set to 2. In RFC3447 (PKCS#1 v2.1), the second byte is supposed * to be 2 regardless of which key is used. For compatibility purposes, we'll just check to make sure the * second byte is 2 or less. If it is, we'll accept the decrypted string as valid. * * As a consequence of this, a private key encrypted ciphertext produced with \phpseclib\Crypt\RSA may not decrypt * with a strictly PKCS#1 v1.5 compliant RSA implementation. Public key encrypted ciphertext's should but * not private key encrypted ciphertext's. * * @access private * @param string $c * @return string */ function _rsaes_pkcs1_v1_5_decrypt($c) { // Length checking if ($this->bitstrlen($c) != $this->k) { // or if k < 11 user_error('Decryption error'); return false; } // RSA decryption $c = $this->_os2ip($c); $m = $this->_rsadp($c); if ($m === false) { user_error('Decryption error'); return false; } $em = $this->_i2osp($m, $this->k); // EME-PKCS1-v1_5 decoding if (ord($em[0]) != 0 || ord($em[1]) > 2) { user_error('Decryption error'); return false; } $ps = $this->bitsubstr($em, 2, strpos($em, chr(0), 2) - 2); $m = $this->bitsubstr($em, $this->bitstrlen($ps) + 3); if ($this->bitstrlen($ps) < 8) { user_error('Decryption error'); return false; } // Output M return $m; } /** * EMSA-PSS-ENCODE * * See {@link http://tools.ietf.org/html/rfc3447#section-9.1.1 RFC3447#section-9.1.1}. * * @access private * @param string $m * @param int $emBits */ function _emsa_pss_encode($m, $emBits) { // if $m is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. $emLen = ($emBits + 1) >> 3; // ie. ceil($emBits / 8) $sLen = $this->sLen !== null ? $this->sLen : $this->hLen; $mHash = $this->hash->hash($m); if ($emLen < $this->hLen + $sLen + 2) { user_error('Encoding error'); return false; } $salt = Random::string($sLen); $m2 = "\0\0\0\0\0\0\0\0" . $mHash . $salt; $h = $this->hash->hash($m2); $ps = str_repeat(chr(0), $emLen - $sLen - $this->hLen - 2); $db = $ps . chr(1) . $salt; $dbMask = $this->_mgf1($h, $emLen - $this->hLen - 1); $maskedDB = $db ^ $dbMask; $maskedDB[0] = ~chr(0xFF << ($emBits & 7)) & $maskedDB[0]; $em = $maskedDB . $h . chr(0xBC); return $em; } /** * EMSA-PSS-VERIFY * * See {@link http://tools.ietf.org/html/rfc3447#section-9.1.2 RFC3447#section-9.1.2}. * * @access private * @param string $m * @param string $em * @param int $emBits * @return string */ function _emsa_pss_verify($m, $em, $emBits) { // if $m is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. $emLen = ($emBits + 1) >> 3; // ie. ceil($emBits / 8); $sLen = $this->sLen !== null ? $this->sLen : $this->hLen; $mHash = $this->hash->hash($m); if ($emLen < $this->hLen + $sLen + 2) { return false; } if ($em[strlen($em) - 1] != chr(0xBC)) { return false; } $maskedDB = $this->bitsubstr($em, 0, -$this->hLen - 1); $h = $this->bitsubstr($em, -$this->hLen - 1, $this->hLen); $temp = chr(0xFF << ($emBits & 7)); if ((~$maskedDB[0] & $temp) != $temp) { return false; } $dbMask = $this->_mgf1($h, $emLen - $this->hLen - 1); $db = $maskedDB ^ $dbMask; $db[0] = ~chr(0xFF << ($emBits & 7)) & $db[0]; $temp = $emLen - $this->hLen - $sLen - 2; if ($this->bitsubstr($db, 0, $temp) != str_repeat(chr(0), $temp) || ord($db[$temp]) != 1) { return false; } $salt = $this->bitsubstr($db, $temp + 1); // should be $sLen long $m2 = "\0\0\0\0\0\0\0\0" . $mHash . $salt; $h2 = $this->hash->hash($m2); return $this->_equals($h, $h2); } /** * RSASSA-PSS-SIGN * * See {@link http://tools.ietf.org/html/rfc3447#section-8.1.1 RFC3447#section-8.1.1}. * * @access private * @param string $m * @return string */ function _rsassa_pss_sign($m) { // EMSA-PSS encoding $em = $this->_emsa_pss_encode($m, 8 * $this->k - 1); // RSA signature $m = $this->_os2ip($em); $s = $this->_rsasp1($m); $s = $this->_i2osp($s, $this->k); // Output the signature S return $s; } /** * RSASSA-PSS-VERIFY * * See {@link http://tools.ietf.org/html/rfc3447#section-8.1.2 RFC3447#section-8.1.2}. * * @access private * @param string $m * @param string $s * @return string */ function _rsassa_pss_verify($m, $s) { // Length checking if ($this->bitstrlen($s) != $this->k) { user_error('Invalid signature'); return false; } // RSA verification $modBits = 8 * $this->k; $s2 = $this->_os2ip($s); $m2 = $this->_rsavp1($s2); if ($m2 === false) { user_error('Invalid signature'); return false; } $em = $this->_i2osp($m2, $modBits >> 3); if ($em === false) { user_error('Invalid signature'); return false; } // EMSA-PSS verification return $this->_emsa_pss_verify($m, $em, $modBits - 1); } /** * EMSA-PKCS1-V1_5-ENCODE * * See {@link http://tools.ietf.org/html/rfc3447#section-9.2 RFC3447#section-9.2}. * * @access private * @param string $m * @param int $emLen * @return string */ function _emsa_pkcs1_v1_5_encode($m, $emLen) { $h = $this->hash->hash($m); if ($h === false) { return false; } // see http://tools.ietf.org/html/rfc3447#page-43 switch ($this->hashName) { case 'md2': $t = pack('H*', '3020300c06082a864886f70d020205000410'); break; case 'md5': $t = pack('H*', '3020300c06082a864886f70d020505000410'); break; case 'sha1': $t = pack('H*', '3021300906052b0e03021a05000414'); break; case 'sha256': $t = pack('H*', '3031300d060960864801650304020105000420'); break; case 'sha384': $t = pack('H*', '3041300d060960864801650304020205000430'); break; case 'sha512': $t = pack('H*', '3051300d060960864801650304020305000440'); } $t.= $h; $tLen = $this->bitstrlen($t); if ($emLen < $tLen + 11) { user_error('Intended encoded message length too short'); return false; } $ps = str_repeat(chr(0xFF), $emLen - $tLen - 3); $em = "\0\1$ps\0$t"; return $em; } /** * RSASSA-PKCS1-V1_5-SIGN * * See {@link http://tools.ietf.org/html/rfc3447#section-8.2.1 RFC3447#section-8.2.1}. * * @access private * @param string $m * @return string */ function _rsassa_pkcs1_v1_5_sign($m) { // EMSA-PKCS1-v1_5 encoding $em = $this->_emsa_pkcs1_v1_5_encode($m, $this->k); if ($em === false) { user_error('RSA modulus too short'); return false; } // RSA signature $m = $this->_os2ip($em); $s = $this->_rsasp1($m); $s = $this->_i2osp($s, $this->k); // Output the signature S return $s; } /** * RSASSA-PKCS1-V1_5-VERIFY * * See {@link http://tools.ietf.org/html/rfc3447#section-8.2.2 RFC3447#section-8.2.2}. * * @access private * @param string $m * @return string */ function _rsassa_pkcs1_v1_5_verify($m, $s) { // Length checking if ($this->bitstrlen($s) != $this->k) { user_error('Invalid signature'); return false; } // RSA verification $s = $this->_os2ip($s); $m2 = $this->_rsavp1($s); if ($m2 === false) { user_error('Invalid signature'); return false; } $em = $this->_i2osp($m2, $this->k); if ($em === false) { user_error('Invalid signature'); return false; } // EMSA-PKCS1-v1_5 encoding $em2 = $this->_emsa_pkcs1_v1_5_encode($m, $this->k); if ($em2 === false) { user_error('RSA modulus too short'); return false; } // Compare return $this->_equals($em, $em2); } /** * Set Encryption Mode * * Valid values include self::ENCRYPTION_OAEP and self::ENCRYPTION_PKCS1. * * @access public * @param int $mode */ function setEncryptionMode($mode) { $this->encryptionMode = $mode; } /** * Set Signature Mode * * Valid values include self::SIGNATURE_PSS and self::SIGNATURE_PKCS1 * * @access public * @param int $mode */ function setSignatureMode($mode) { $this->signatureMode = $mode; } /** * Set public key comment. * * @access public * @param string $comment */ function setComment($comment) { $this->comment = $comment; } /** * Get public key comment. * * @access public * @return string */ function getComment() { return $this->comment; } /** * Encryption * * Both self::ENCRYPTION_OAEP and self::ENCRYPTION_PKCS1 both place limits on how long $plaintext can be. * If $plaintext exceeds those limits it will be broken up so that it does and the resultant ciphertext's will * be concatenated together. * * @see self::decrypt() * @access public * @param string $plaintext * @return string */ function encrypt($plaintext) { switch ($this->encryptionMode) { case self::ENCRYPTION_NONE: $plaintext = str_split($plaintext, $this->k); $ciphertext = ''; foreach ($plaintext as $m) { $ciphertext.= $this->_raw_encrypt($m); } return $ciphertext; case self::ENCRYPTION_PKCS1: $length = $this->k - 11; if ($length <= 0) { return false; } $plaintext = str_split($plaintext, $length); $ciphertext = ''; foreach ($plaintext as $m) { $ciphertext.= $this->_rsaes_pkcs1_v1_5_encrypt($m); } return $ciphertext; //case self::ENCRYPTION_OAEP: default: $length = $this->k - 2 * $this->hLen - 2; if ($length <= 0) { return false; } $plaintext = str_split($plaintext, $length); $ciphertext = ''; foreach ($plaintext as $m) { $ciphertext.= $this->_rsaes_oaep_encrypt($m); } return $ciphertext; } } /** * Decryption * * @see self::encrypt() * @access public * @param string $plaintext * @return string */ function decrypt($ciphertext) { if ($this->k <= 0) { return false; } $ciphertext = str_split($ciphertext, $this->k); $ciphertext[count($ciphertext) - 1] = str_pad($ciphertext[count($ciphertext) - 1], $this->k, chr(0), STR_PAD_LEFT); $plaintext = ''; switch ($this->encryptionMode) { case self::ENCRYPTION_NONE: $decrypt = '_raw_encrypt'; break; case self::ENCRYPTION_PKCS1: $decrypt = '_rsaes_pkcs1_v1_5_decrypt'; break; //case self::ENCRYPTION_OAEP: default: $decrypt = '_rsaes_oaep_decrypt'; } foreach ($ciphertext as $c) { $temp = $this->$decrypt($c); if ($temp === false) { return false; } $plaintext.= $temp; } return $plaintext; } /** * Create a signature * * @see self::verify() * @access public * @param string $message * @return string */ function sign($message) { if (empty($this->modulus) || empty($this->exponent)) { return false; } switch ($this->signatureMode) { case self::SIGNATURE_PKCS1: return $this->_rsassa_pkcs1_v1_5_sign($message); //case self::SIGNATURE_PSS: default: return $this->_rsassa_pss_sign($message); } } /** * Verifies a signature * * @see self::sign() * @access public * @param string $message * @param string $signature * @return bool */ function verify($message, $signature) { if (empty($this->modulus) || empty($this->exponent)) { return false; } switch ($this->signatureMode) { case self::SIGNATURE_PKCS1: return $this->_rsassa_pkcs1_v1_5_verify($message, $signature); //case self::SIGNATURE_PSS: default: return $this->_rsassa_pss_verify($message, $signature); } } /** * Extract raw BER from Base64 encoding * * @access private * @param string $str * @return string */ /* X.509 certs are assumed to be base64 encoded but sometimes they'll have additional things in them * above and beyond the ceritificate. * ie. some may have the following preceding the -----BEGIN CERTIFICATE----- line: * * Bag Attributes * localKeyID: 01 00 00 00 * subject=/O=organization/OU=org unit/CN=common name * issuer=/O=organization/CN=common name */ $temp = preg_replace('#.*?^-+[^-]+-+[\r\n ]*$#ms', '', $str, 1); // remove the -----BEGIN CERTIFICATE----- and -----END CERTIFICATE----- stuff $temp = preg_replace('#-+[^-]+-+#', '', $temp); // remove new lines }